
AD-A267 370III II11 1111I1111111111111111 liiiý, 3 SEP liiiO 2 SE'P Y.
7AuI7r,-T0LF.PNT ARCHITECTURES FOR

MULTIPROCESSOR & VLSI-BASED SYSTEMS (U)

Prnf es~sor Dhi ra j K . Pr-ihai EL EC TE D ~ S 0(I 1:~

AUG 4 1993
IUnLversity o1f .assaclhusetts
ElectricaLiComputer Engineering S C
Amherst M 01003

AFOSR/'NM

L11) DUNCAN AVE, SUnE BII5 AFOSR-91-0O,03
BOLLING AFB DC 20332-0001

7 1

" A!, " "-. . ,o- 1,b DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED LIL

II

The research investigated under this grant: (I.) a virtual checkpointing scheme for
recovery, (2) schemes for implementing reliable memory, (3) roll-forward recovery
schemes for duplex systems, (4) REACT, a tool for reliable architecture
characterization and its application to reliability evaluation of TMR systems, (5)
a. new approach for low-cost system level diagnosis and (6) the reliability safety
rade-off in modular redundant syistems.

93 8 3 002

93-17271 35
_________ 111 111 111 Il! ,__________________-____,

"J'•, ,'6 PRICE CCOE

- M1 i('"CN " ' ' . . S,(TN , , . '.MI• i N' - -CA I JC T N %1A 7

UNCI.ASSIFIED UNCLASSIFIED j UNCLASSIFIED AR(SAME AS REPORTj,

lI

AFOSR 91-0403

Final Report for

Fault-Tolerant Architectures for
Multiprocessor

and VLSI-Based Systems

Dhiraj K. Pradhan

Electrical and Computer Engineering

University of Massachusetts

Amherst, MA 01003

!.Ig ...• -'j ,

Sf y L~L

DTIC QU IJTY :5 A -~r),t
, Av i! i tl t\ ' ii

I

Contents

1 Virtual Checkpointing 1

2 Reliable Memory Design 4

3 Roll-forward Checkpointing Schemes 6

4 Synthesis and Evaluation of Alternative Fault-Tolerant Architectures 8

4.1 The Reliable Architecture Characterization Tool 9

4.2 Reliability Analysis of Unidirectional Voting TMR Systems 11

5 Safe System Level Diagnosis 15

6 Safe Modular Redundant Systems 16

7 Papers Published Under AFOSR Grant 91-0403 and References 17

8 Curriculum Vitae 20

9 Biography 34

This report summarizes the research performed under AFOSR grant 91-0403. Sec-

tion 1 presents a virtual checkpointing scheme for recovery. Section 2 presents schemes

for implementing reliable memory. Roll-forward recovery schemes for duplex systems are

discussed in Section 3. Section 4 discusses REACT, a tool for reliable architecture charac-

terization and it application to reliability evaluation of TMR systems. Section 5 discusses a

new approach for low-cost system level diagnosis. Section 6 presents results on the reliability-

safety trade-off in modular redundant systems.

1 Virtual Checkpointing

Virtual Checkpoints combines concepts from two database recovery techniques of shadow

paging and twin paging to support checkpoint and rollback recovery in the virtual memory

translation hardware [1, 5, 6>. The concept of supporting the active data is implemented by

dynamically allowing a second copy of the virtual page. The active pages can be identified

by the use of a checkpoint counter associated with each page. In addition to detecting active

pages in a rollback situation, the counters also allow the checkpoint processing to be deferred

past the exact instance of the checkpoint (assuming a fault tolerant memory).

The technique supports two classes of data within the virtual memory system (i.e.,

active and checkpoint). Each class still supports the traditional two level store of virtual

memory (i.e., real memory and paging disk). Similar to the other schemes, virtual check-

points must be able to detect all active pages and make all active pages permanent at the

checkpoint time. This is achieved by having a global checkpoint counter (V) covering all the

data and local checkpoint counters tu) for individual pages. Essentially, the global check-

point counter is copied to the I, '-al -punter on every reference (note: this is the logical

description and does not actually occur on every reference). Thus, active data is the pages

with the local counter v equal to the global counter V. The global counter V is incremented

when a checkpoint is taken. Thus, all active pages become checkpoint versions when the

global counter V is incremented. Figure 1 illustrates the basic concepts. Virtual page k

has not been referenced since the prior checkpoint. Page j has been accessed in the current

interval aid has both an active and checkpoint version. Note that in all cases the mapping

refers to both a real storage frame and a disk slot.

k -- F__ I Checkpoint
-- L _ I_ (v<V)

L- - --- J V<)

r"Active

_ (v = V)
j -1

ITi l II' Checkpoint
L - - J

I_ I

Virtual Real Paging
Memory Memory Disk

Figure 1: Virtual Checkpointing: Basic concept

The mappings for each virtual page are replicated and are referred to as m0 and

mi. A mapping mi contains mappings for the real frame (rj) and the disk copy (di). Each

virtual page has a one bit field, 1, which can be thought of as a switch that points to the

most recently used mapping (i.e., mo or ml). Thus, the notation mi refers to the mapping

that was used last. In addition, each page has a k-bit local checkpoint number (v) which

contains a copy of the global checkpoint number (V) during the most recent reference. The

checkpoint number, V, is a global value which is incremented on every checkpoint (the scope

of V determines the scope of the checkpoint, e.g., the entire system, a single address space

or portions of an address space).

An important aspect of the scheme is that the actions of taking a checkpoint are not

concentrated at the actual time of the checkpoint but rather are distributed over the time

following the checkpoint. This is because, under the assumption of fault tolerant memory, the

only action required to perform a checkpoint is to increment the global checkpoint counter

V. The processing for the individual pages is deferred until the first reference to the page

after the checkpoint. In order to determine whether the deferred processing must occur,

2

the values V and v must be compared on every reference (using the translation look-aside

buffer with the scheme avoids having to actually make this comparison on every refcrence).

Thus, when a page is referenced it is either the case where the checkpoint processing must

occur (v 7i V) or a normal access to the active page (v = V). Figure 2 shows a situation

where checkpoints were taken at times tc1 and t,2 . Consider the events at time tR2. The

active page addressed by mi (I = 1) was last referenced at time tRI (thus v = 1). The

reference at time tR2 is the first reference after the checkpoint (because v $ V) and the

contents of page mi must be preserved as the checkpoint page. Furthermore, the contents

of page mi must be used while the resources of the old checkpoint page m0 (whose contents

are no longer required) are used. Once the valid data has been copied to in0 , the l-bit is

inverted (to I = 0) so that m0 becomes the active and mi becomes the checkpoint. Finally,

the global checkpoint number V is copied to the local checkpoint number for this page so

that on the next access in the checkpoint interval a normal translation occurs. Figure 3

tel tc 2

V=o0 v-i = V=2

tRO :mO tR1 : Ml tR2

checkpoint active
"v=l

Figure 2: Case 1- first reference after checkpoint.

shows the situation at the next rvference in this checkpoint interval. A reference at time tR3

proceeds normally to the active 'tai:i at m0 because V matches v.

A rollback requires discarding any data that has been modified since the prior check-

point. If the page has not yet been referenced since the prior checkpoint then the page is

essentially in a rolled back state and nothing needs to be done (e.g., Case 1 in Figure 2).

If the page has been referenced since the prior checkpoint then there is an active page that

must be discarded. For example, if a failure occurs at time tR3 in Figure 3, one wants to

discard m0 and restore mi. So for all pages with V' -= v, the v value is decremented and the

3

I

tý2

V=1 V=2

tR1 : m 1 tR2 MO tR3

checkpoint active
v =2

Figure 3: Case 2- page previously referenced.

I bit is inverted. This forces the state to be like Figure 2 where m, contains the checkpoint

and m0 contains useless information.

2 Reliable Memory Design

The use of a hybrid memory structure consisting of both highly reliable and normal memory

can further support persistent and recoverable memory [1]. Hybrid algorithms that man-

age the writable memory and read-only memory separately are proposed. The traditional

measures of virtual memory algorithms (i.e., lifetime and space-time) have been extended to

account for the dual nature of the policies. Several properties of the policies have been ex-

plored. It has been shown that the knee of a hybrid lifetime curve produces a near minimum

space-time product as with the existing algorithms. Hybrid policies are more controllable

with respect to highly reliable memory because they can constrain the amount of writable

memory and gain performance by using additional read-only memory. The lifetime mea-

sure for the hybrid policies under constrained writable memory, when compared at equal

amounts of highly reliable memory, is better than the single policy algorithm at a small

cost of additional read-only memory. Furthermore, even at an unconstrained amount of

writable memory, the hybrid policy produces approximately equal performance while the

writable memory can be completely fixed in size. Theoretical results are also derived for a

property which indicates the optimal performance for a hybrid reference stream based on

two individual streams.

4

I

I
I

The ability to accurately predict the reliability of a system is very important. Two

novel techniques have been developed which focus on dynamic aspects of memory [2, 3, 4, 7].

The first focuses on the memory reference patterns of a particular program while the second

looks at memory behavior due to memory management actions.

The first novel technique evaluates the probability of correct execution of a program

based on the program's memory access behavior. The approach is an analytical study using

an existing model which characterizes an address trace with four parameters. Three cases are

developed based on the storage allocation policy (i.e., pre-allocated, dynamically allocated,

or constrained in allocation). The models are able to compare the traditional view that is

taken in standard memory reliability analysis to that of a real world environment where a

program uses a varying fraction of the memory at different instances. Using these models, it 0

is shown that the reliability may be significantly better than the apparent reliability when

the program behavior was not considered. It provides one explanation for the cause of

unobserved faults along with an analytical basis for determining the extent of faults not

being observed. Possibly the most important application of these models is to analytically 1 4

quantify the observed phenomenon that failure rates increase with increased workload. A

new explanation has been proposed for this phenomenon based on the notion that programs

often have storage allocated which will never be referenced again and cannot cause a failure.

Assuming a constant fault rate over increased workloads, the model shows that there could

be a significant increase in observed failures, The model was validated with actual program

traces and shown to be very accurate. Finally, several techniques have been shown for

extracting the fractal parameters of a program trace.

The second novel technique for reliability analysis uses the memory space allocated

to more accurately calculate the reliability. This can be used to understand the relationship

between the amount of memory allocated and the reliability. This effect has been quantified

based on the relative cost of a fault. Distinct effects have been measured depending on

the relative speed of the paging device. For small reload times it is found that a decrease

in the memory partition size leads to an increase in reliability at the cost of additional

instruction overhead. For extremely long reload times it is found that larger amounts of

memory lead to increased reliability. There also exists a middle reload time where the

lI

'V

I

optimal reliability corresponds to the optimal space-time performance. Other aspects of

virtual memory algorithms such as small pages and different paging algorithms were studied.

Furthermore, the methodology was applied to study the reliability of cache memories which

have the characteristic of very small reload delays. The results show that the reliability

improvement factor can change by several orders of magnitude ba.d on the cache size. For

small memory sizes it was found that a very small number of page durations contribute to

a majority of the total unreliability. Two techniques have been suggested to remove these

long durations, which then lead to even greater improvements in the reliability. One is

an algorithm called selective scrubbing to break the long durations, which could either be

implemented in software or hardware. A second technique showed that the addition of very

small amounts of highly reliable memory can also lead to significant reliability improvements.

3 Roll-forward Checkpointing Schemes

A fault-tolerant multiprocessor environment wherein each task is executed simultaneously *
on two processing modules is considered. A pool of a small number of nondedicated spares

or processing modules witih spa-e processing capacity is assumed available (see Figure 4).

Duplex fault-tolerant architectures that require no rollback for most faults are proposed.

Proc P r o-

SS IProcessor

SS: Stable Storage
Spare VS: Volatile Storage

Figure 4: System architecture for roll-forward checkpointing schemes

In the proposed schemes, at each checkpoint tho state of the two modules executing

the task is compared for detection of faults. If a fault is detectad, instead of usual rollback,

the following mechanism is used for identification of the faulty processing module [13, 14, 17'.

The good state of the previous checkpoint is loaded into a spare module. The checkpoint

interval in which the failure is detected is then "retried" on the spare module. Concurrently,

the task continues execution on both processing modules in the duplex system. At the next

checkpoint the state of the spare is compared with the state of the two processing modules

at the previous checkpoint where disagreement occurred. This allows for the identification

of the faulty module (see Figure 5). Once the faulty module is identified, the state of the

faulty module is made consistent with the state of the fault-free module in the duplex system

and the spare is released to the pool.

A lj lj+i 1

B 3

S
: Ii

t 0 t 1 t 2 Time

I Copy state to the spare

2 Compare state of the spare with the state of A and B

3 Copy state from A to B

X A fault

Figure 5: Rull-forward checkpointing scheme

These schemes are termed as Roll-Forward Checkpointing Schemes (RFCS). The

proposed RFCS schemes provide a mechanism for identifying the faulty processing module

and recovering it, in most cases, without the overhead of rollback. It is demonstrated that the

proposed schemes have potential performance advantages over conventional duplex system

7

with rollback.
4'

Specifically, the advantage of the proposed schemes is that they achieve a lower aver-

age execution time with a lower variance as compared to the rollback schemes. This is crucial

for real-time systems with hard deadlines as lower variance enhances the predictability of

the task completion time.

4 Synthesis and Evaluation of Alternative Fault-Tolerant

Architectures

Another direction of our research was the study of alternative fault-tolerant computer sys-

tems. Our continuing goal is to synthesize and evaluate novel a-chitectures which offer

increased performance and/or require less hardware than traditional designs while provid-

ing nearly the same dependability. We are specifically interested in the class of architectures

which can be represented by the generalized system model pictured in Figure 6. This mul-

tiprocessor abstraction consists of multiple, possibly redundant, processor (P) and memory

(M) modules interconnected through some form of error control logic (such as voters, com-

parators, switches or error correcting codes). AX wide variety of highly dependable architec-

tures fit this model: static, dynamic and hybrid redundancy, systems with coding plus many

non-fault-tolerant multiprocessors.

Reliability and availability are the metrics used to judge the efficacy of the perfor-

mance/redundancy tradeoffs being investigated. Many hardware and software attributes

influence the dependability of a Yst,'rn, including specific fault characteristics, error con-

tainment ability and variations in w .rkload. We are particularly concerned with the effect

program behavior has on reliaLilityv -,tailed system m,-dels which account for these factors

are often very difficult to formulate through analytical techniques (such as combinatorial

and Markov models) which are C-,,rnrnonly used for dependability assessment. In order to

facilitate our research, we have develped a simulated fault-injection testbed called REACT

to experimentally analyze the d(ependability 4 these new computer architectures.

8

p -

P ~Error _

Control
Logic

pand 1_ M1
Interconnect

* 0

Figure 6: Generalized System Model

4.1 The Reliable Architecture Characterization Tool

The Reliable Architecture Characterization Tool (REACT) is a software testbed which per-

forms automated hie tcsting of many user-defined multiprocessor systems through simulated

fault-injection [9, 12]. This involves emulating the high-level hardware and software compo-

nents of a given system while concurrently injecting bit-level faults and errors into it. During

a single simulation run, the code conducts a certain number of experiments or tials in which

an initially fault-free system is operated until it fails or reaches a specified censoring time.

The exact number of trials required is determined by the desired confidence intervals about

the system dependability attribute being investigated. Extensive instrumentation has been

included in the program in order to collect data irom each trial which is later aggregated

over the entire simulation run in order to generate the outputs. Cr.phs of reliability and

availability, a comprehensive failure mode report and various statistical measurements are

provided as output by the software. REACT consists of 8000 lines of C running under UNIX

and completes a "typical" simulation run in less than 10 hours on a dedicated DECstation

5000/120.

REACT can analyze the class of architectures which was shown previously in Figure 6.

Any number of processor and memory modules may be specified and each can be designated

9

as initially active or a hot or cold standby spare. Groups of processors or memories may also

be defined in which all modules operate redundantly. The error control logic may be built

from various combinations of components commonly found in fault-tolerant designs. Custom

error control logic circuitry may also be specified by the user. Processors are simulated at

the functional-level whereas a logical-level description is used for the memory modules and

error control logic. Logic values 0 and 1 are not differentiated in the system model: only

error-free and erroneous states exist for each bit. Memory depth is variable and a 16-bit

word width for memory and all data paths has currently been implemented. Other word

sizes may be realized with minor modifications in the code.

A synthetic workload is assumed in which processors continually perform computa-

tzon 7ycles consisting of an instruction fetch, a possible operand read, a computation and a

possible result write. Real code and data are not used by REACT, but errors are allowed

to propagate throughout the system as if the application program was actually being ex-

ecuted. Behavior of the application workload is specified by a mean instruction execution

rate, the probabilities of performing a data read and write per instruction plus a locality of

reference model. Values for the mean number of data accesses made during the execution of

an instruction may be obtained either through trace analysis or directly from the measure-

ment of operational hardware. It is assumed that all memory references access one whole

word. Which memory locations are access, J during a computation cycle are determined via

the locality of reference model. The testbed implements a model based on Bradford-Zipf

distributions which suggests that oi % of all accesses go to 3 % of the memory under the

condition ct + 3 ý 1. Reference addresses are assumed to be uniformly distributed inside

and outside of the locality and ni attempt is made to separate code from data in memory

with the model.

The fault/error model enplhvcd by REACT accounts for permanent, intermittent

and transient faults in the processors plus permanent and transient faults in the memories

as well as the error control logic. Faults with a Weibull distribution (of which the exponential

distribution is a subset) for their inter-arrival times are injected into these modules only at

the beginning of a computation cycle. Faults are assumed to always cause immediate errors,

so their fault (but not error) latency is 0. Correlated failures are presently not considered.

10

"J/1 WEBSTER, NEW YORK 14580 '
(716) 265-1600

Processor fault effects are assumed to be completely characterized by the rate at

which errors appear on its memory bus. Three types of errors exist: transients lasting only

one computation cycle, intermittents with a Weibull distributed duration and permanents

which have an effect in every computation cycle. Errors may affect either addresses, (write)

data or both addresses and data simultaneously. An erroneous address is assumed to access

a random memory location while erroneous data take a random value. In addition, erroneous

processor reads generate output errors in the same computation cycle.

Memory faults are divided among the bit-array and addressing-logic regions of a mem-

ory module. The fraction of faults which fall into each of these regions may be approximated

by their relative chip areas. Bit-array faults are assumed to affect a single random bit in a

word at a random address while a random location is referenced during an addressing-logic

fault. A transient bit-array fault may be overwritten (changing it from the erroneous to

error-free state) at any time, but a permanent can never be overwritten. Addressing-logic

transients last one computation cycle and permanents will cause the memory module to

endlessly access random words. An access to a random address reads or writes a value with

randomly corrupted bits, representing the difference between the bit values of the word that

was accessed and the word that should have been accessed. Finally, faults within one of the

error control logic components are assumed to affect a single random bit either permanently

or for one computation cycle in the case of transients.

4.2 Reliability Analysis of Unidirectional Voting TMR Systems

Computer systems used in aircraft irri r,eactor control often require critically high reliability

for moderately short mission tin', lriple-modular redundant (TMR) hardware has been

employed in many of these ultralihlh rihability applications. The three redundant processors

of a TMR system concurrently execute identical tasks while the triplicated memories contain

the same code and data. Majority v%,ting is used to mask erroneous module outputs. As seen

in Figure 7, the voter (V) is usually inserted into the redundant system buses between the

processors (P) and memories (M). Bit-wise voting is typically performed on data, address

and control lines during both read and write accesses to memory. Such a system will be

11

referred to as bidirectional voting (BDV) TMR.

lIP

P

Figure 7: TMR System with Bidirectional Voting

Voting has a substantial performance penalty associated with it. This degradation

can be attributed to two specific delays 18). The propagation delay of signals through the

voter logic is the more obvious contributor to increased memory access times. Less apparent

is the synchronization delay incurred when clock skew requires modules to wait for a

lagging signal before performing a vote. This penalty becomes even greater if a module fails

in such a way that it does not respond, forcing a timeout period to be suffered on each

memory reference. TMR systems used in hard real-time applications may not be able to

tolerate the ensuing drop in throughput after this type of failure.

It is possible to significantly reduce the performance degradation of a BDV system by

voting only on one type of memory access, either reads or writes. These unidirectional

voting systems are expected to have lower reliability than the bidirectional design since a

smaller fraction of errors will be masked, possibly allowing them to propagate and corrupt

the state of non-faulty modules.

Because the voter may be by-passed on either memory read or write accesses to

achieve higher performance, two different unidirectional voting systems exist. The Read-

12

tI

'I I

Only Voting (ROV) TMR system removes the voting delays from the bus cycle on writes.

Processor generated read addresses and memory outputs are voted upon and a single voted

value is distributed to all three processors. Processor outputs are written straight into the

corresponding memories without any error masking. The ROV TMR system therefore allows

processor errors to propagate into the memories while all single errors from memory will be

contained by the voter.

The dual of the ROV system is the Write-Only Voting (WOV) TMR system which

eliminates the delay associated with voting on read accesses. It performs a vote only at the

outputs of the processors and writes a single voted value into all three memories at a voted

address. No masking of data or addressing errors takes place during reads, so erroneous

memory outputs may propagate directly into the associated processors. Voting terminates

any single processor error before it reaches the memories.

Both unidirectional voting TMR systems can realize better performance than the tra-

ditional bidirectional voting system. However, WOV should have better performance

than ROV because it suffers the delays of voting less often since reads generally occur

much more frequently than writes. In terms of fault-tolerance, one might expect ROV 'o

provide higher reliability than WOV for similar reasons. When processors and mem-

ories experience faults at the same rate, the percentage of potentially fatal errors that will

get masked will be larger with the ROV system. In addition, memory often has a higher

fault rate than processors so the percentage of errors masked will be even greater when the

voter is placed at the output of the less rehable component.

Two parametric analyses, .f the bidirectional and unidirectional voting TMR systems

were carried out with REACT I .1 11 Figure 8 shows a typical rehability plot from this

investigation. The following ohrvari ,,ns were made:

"* the tradeoff of rehabihty for performance made by the unidirectional voting systems

becomes more effective as the difference between processor and memory module failure

rates increases

"* near ideal tradeoffs can be attained for some failure rate combinations, particularly

when memory is more likely to fail than the processors

13

" the analytical model traditionally used to predict the reliability of TMR designs is

indicative of some of the differences between the bidirectional and unidirectional voting

systems, but is not always accurate

"* reliability of the ROV system is generally better than the WOV system, except when

processor failure rates are high relative to the memory failure rates

"* system failure is caused by propagation of errors more often in the WOV system than

in the ROV system

"* workload has limited effects on reliability when memory error latency is low

Results demonstrated that in many cases, acceptably little reliability was sacrificed by the

unidirectional voting TMR systems for a potentially large increase in performance.

AP module = 10-
5
, A•Module - 10-5

0.9998 o. BDV TMR
+.. ROV TMR
C.. WOV TMR

0.9996 +
Reliability

R(t)

0.9994 C" 4
Q

0.9992

0.999 - '7 6 0

0 20 40 60 80 100

Time t (hours)

Figure 8: Example Reliability Plot from Analysis with REACT

14

5 Safe System Level Diagnosis

System level diagnosis has until now, focussed on location of faulty nodes in a system.

A novel low-cost approach termed safe diagnosis has been developed. Diagnosing a large

number of faulty nodes requires a large number of diagnostic tests. The proposed diagnosis

approach alleviates the high cost of system level diagnosis by reducing the number of tests

carried out periodically. By combining fault location with fault detection, this approach

achieves high levels of diagnostic safety and recoverability. Systems which can guarantee

correct diagnosis of up to t faults, and fault detection up to u faults, u > t, have been

analyzed [15].

Systems that can perform safe system level diagnosis in the presence of permanent

as well as intermittent faults have been characterized. The complexity of safe diagnosis

algorithms is shown to be comparable with the diagnosis algorithms for systems performing

only fault location. When only permanent faults are present, achieving a large fault detection

capability in addition to an existing fault location capability requires only minimal additional

test overhead. The testing overhead for intermittent fault detection is larger compared to

permanent fault detection.

An adaptive diagnosis algorithm that performs fault location and detection is pro-

posed for the permanent fault case. Compared to any adaptive algorithm for pure fault

location, our algorithm requires just one additional test in the worst case. A distributed

algorithm is also proposed for safe diagnosis of distributed multiprocessor systems. Repair

of distributed systems requires that an external user be able to decide the status of all the

system nodes or detect a fault situation beyond the fault location capability of the system.

Algorithms for such user diagnosi. .,f a distributed system have been developed.

The concept of safe diagnosis can be used for adaptive t-diagnosis on any t-diagnosable

system, not necessarily with the traditionally-used fully connected testing graph. An adap-

tive algorithm for t-diagnosis on t-diagnosable testing graphs has been designed.

From the results obtained under the AFOSR grant, it is clear that the safe diagnosis

approach results in low-cost. Thus, the proposed safe diagnosis approach is of significant

interest from a practical viewpoint.

15

I lI

I

6 Safe Modular Redundant Systems

Dependability considerations warrant that in addition to reliability, a dependable system

must have a high level of safety. Therefore, there is a need to ensure operation which is both

error-free under adverse conditions, as well as safe under severely adverse conditions.

We have analyzed a technique for implementing systems requiring high reliability and

safety [161. These systems, named n-Safe modular redundant (nSMR) systems, achieve high

reliability and safety using module replication and redundancy in module output.

An nSMR system consists of n identical modules and an arbiter. The arbiter uses

outputs of all the n modules to decide the nSMR system output. Reliability and safety of

the system are a function of the arbitration strategy used. When reliability is the only cri-

terion, an optimal arbitration strategy that maximizes the reliability can be designed. With

reliability and safety both of concern, usually no single arbitration strategy is optimal. We

have presented an implementation of maximal arbitration strategies which achieve different

maximal reliability and safety combinations. Maximal arbitration strategies are such that

no arbitration strategy has better reliability and safety, compared to a maximal strategy.

The effect of increasing redundancy on the achievable reliability and safety has been

analyzed for systems with and without redundant module outputs. Detailed results on

binary SMR systems using binary arbiters have also been obtained. The results of this

chapter are summarized below.

" It is shown that for modul,' wýit hout output redundancy, no arbitration strategy exists

for (n + 1)SMR which achj,.%,-, 1;,,I ter reliability and safety compared to certain arbi-

tration strategies for nSNP iM-rt iher. given any arbitration strategy for nSMR, there

always exists an arbitratitn ýtrategy for (n + 2)SMR that achieves higher reliability

and safety.

" It is shown that if modules have output redundancy, given an arbitration strategy for

nSMR, one can always find an arbitration strategy for (n+ 1)SMR that achieves better

reliability and safety.

16

low

"* A detailed analysis of binary nSMR systems with single bit output is presented.

Whether binary (n + l)SMR dominates binary nSMR is shown to be dependent on

the relation between the likelihood of a detected error (Pd) and the likelihood of an

undetected error (p.) in a binary module's output. It is shown that when Pd = Pý,

binary (n + l)SMR does not dominate any of the plurality strategies for binary nSMR.

Also, exact expressions for the reliability and safety of the maximal strategies for such

systems have been presented.

"* Design of a family of threshold-based maximal arbitration strategies which achieve

different reliability and safety is presented. Design of a class of arbitration strate-

gies easier to implement as compared to the threshold-based arbitration strategies is

also presented. These arbitration strategies are obtained by generalizing the plurality

strategies.

7 Papers Published Under AFOSR Grant 91-0403

and References

1. N. S. Bowen, Fault-tolerant aspects of memory design. PhD thesis, University of

Massachusetts-Amherst, February 1992.

2. N. S. Bowen and D. K. Pradhan, "Program fault tolerance based on memory access

behavior," in 21rst Symp. on Fault-Tolerant Computing, pp. 426-433, IEEE, June

1991.

3. N. S. Bowen and D. K. Pradhan, "Effect of memory management on reliability," Tech.

Rep. TR-91-CSF-3, University 4 Massachusetts, Feb. 1991.

4. N. S. Bowen and D. K. Pradhan, "Reliability aspects of memory management policies,"

Tech. Rep. TR-91-CSE-16, University of Massachusetts, July 1991.

5. N. S. Bowen and D. K. Pradhan, "A virtual memory translation mechanism to support

checkpoint and rollback recovery," in Supercomputing '91, pp. 890-899, Nov. 1991,

17

NO

4

p

,I

E

6. N. S. Bowen and D. K. Pradhan, "Virtual checkpoints: Architecture and performance,"

IEEE Transactions on Computers, May 1992.

7. N. S. Bowen and D. K. Pradhan, "Issues in fault tolerant memory management," Tech.

Rep. TR-91-CSE-20, University of Massachusetts, Aug. 1991.

8. J. A. Clark and D. K. Pradhan, "Unidirectional voting TMR systems," Tech. Rep.

TR-91-CSE-6, University of Massachusetts, Apr. 1991.

9. J. A. Clark and D. K. Pradhan, "REACT - the reliable architecture characterization

tool," Tech. Rep. TR-92-CSE-22, University of Massachusetts, June 1992.

10. J. A. Clark and D. K. Pradhan, "Reliability analysis of unidirectional voting TMR

systems through simulated fault-injection," in Digest of Papers for the 1992 Workshop

on Fault-Tolerant Parallel and Distributed Systems, pp. 72-81, IEEE, July 1992.

11. 1. A. Clark and D. K. Pradhan, "Reliability analysis of unidirectional voting TMR

systems through simulated fault-injection," Tech. Rep. TR-92-CSE-9, University of 0

Massachusetts, Mar. 1992.

12. J. A. Clark and D. K. Pradhan, "REACT - a synthesis and evaluation tool for fault-

tolerant multiprocessor architectures." to appear in the Annual Reliability and Main- I

tainability Symposium, Jan. 1993.

13. D. K. Pradhan and N. H Vaidya, "Roll-forward checkpointing scheme: Concurrent

retry with nondedicated spares," in IEEE Workshop on Fault Tolerant Parallel and

Distributed Systems, July 1 i`,2

14. D. K. Pradhan and N. H. \Vai : a, -New roll-forward clieckpointing schemes for modular

redundant systems," in Hardware and Software Fault Tolerance in Parallel Computing

Systems (D. R. Avresky, ed), England: Ellis Horwood, 1992.

15. N. H. Vaidya and D. K. Pradhan", "System Level Diagnosis: Combining Detection

and Location," in 21st Int. Symp. Fault Tolerant Comp., June 1991.

18

p
IE

p
16. N. H. Vaidya and D. K. Pradhan, "Voting in fault-tolerant systems: Reliability and

safety issues," Tech. Rep. TR-91-CSE-7, ECE Department, Univ. of Massachusetts,

June 1991.

17. N. H. Vaidya, Low-Cost Schemes for Fault Tolerance. PhD thesis, University of

Massachusetts-Amherst, August 1992.

P 4

l~p

p

Ip

S

8 Curriculum Vitae

Dhiraj K. Pradhan

H. R. Bright Building

Texas A&M University

College Station, TX 77843

Tel: (409) 862-2438

Fax: (409) 847-8578

Email: pradhan@cs.tamu.edu

Positions-Academic

1992 - present Endowed Chair Professor, Department of Computer Science,

Texas A&M University, College Station, Texas.

1983 - 1992 Professor and Coordinator of Computer Systems Engineering,

Department of Electrical and Computer Engineering,

University of Massachusetts, Amherst, Massachusetts. •

1978 - 1982 Associate Professor, School of Engineering,

Oakland University, Rochester, Michigan.

1979 Research Associate Professor, Stanford University,

Stanford, California.

1973 - 1978 Associate Professor, Department of Computer Science,

University of Regina, Regina, Canada. (1973-1976,

Assistant Professor).

Positions-Industrial

1972 - 1973 Staff Engineer, IBM, Systems Development Laboratory,

Poughkeepsie. New York.

Honors

1990 Humboldt Dzstinguished Senior Scientist Award, Germany

1989 Fellow, Japan Society for Promotion of Science

1988 Fellow, IEEE, "For contributions to techniques and
theory of designing fault-tolerant circuits and systems"

20

1p

Education

1972, Ph.D. (Electrical Engineering), University of Iowa

Iowa City, Iowa.

1970, M.S. (Electrical Engineering), Brown University,

Providence, Rhode Island.

Personal

Born on December 1, 1948, Married, Five Children, U.S. Citizen

21

8

Professional Activities I

1992 - Conference Chair, 22nd International Symposium on Fault-Tolerant
Computing, Boston, Massachusetts

1992 - Program Chair, 10th IEEE VLSI Test Symposium

1991 - Editor, IEEE Transactions on Computers

1990 1992 ACM Lecturer

1990 - 1993 IEEE Dzstnquzshcd Visitor, Computer Society

1990 - Editor, IEEE Computer Society Press

1990 - Keynote Speaker, International Symposium on Fault-Tolerant
Systems and Diagnostics, Varna, Bulgaria

1989 - Associate Editor, Journal of Circuits, Systems and Computers
World Scientific Publishing Co., New Jersey

1988 - Editor, Jou, nal of Electronic Testing, Theory and Applications
Kluwer Academic Publishers, Boston

1987 Co-Chairperson, IEEE Workshop on Fault-Tolerant Distributed
and Parallel Systems, San Diego, California 5 0

1986 Guest Editor, IEEE Transactions on Computers,
Special Issue on Fault-Tolerant Computing, April 1986

1986 - 1988 Editor, Advances in VLSI Systems, Computer Science Press,
Maryland

1982 - 1985 IEEE Distinguished Visitor, Computer Society

1982 - Consultant to Mitre, CDC, IBM, AT&T, DEC ard Data General

1981 - 1988 Editor, Journal of VLSI and Digital Systems, Computer Science

Press, Maryland

1980 Guest Editor, Special Issue on Fault-Tok.ailt Computing,
IEEE Coniputer March 1980

Member of Prnqram Committee for Fault-Tolerant Computing Symposium,
Computer Architecture Conference and other conferences

Chaired sessions and organized panel discussions at various international
conferences

Grants

22

1973 - present Multiple grants from NSF, AFOSR, ONR, SRC, Bendix, IBM and

NRC (Canada); supported continuously, $50,000-S200,000 per year.

23

- Ink

Research Supervision

1978 - present Several Ph.D. Students, placed in IBM, AT&T as well as
leading universities

1977 - Research Associates:

K.L. Kodandapani

T. Nanya
K. Matsui
I. Koren
D. Avresky
F. Meyer

Patents

"Easily Testable High Speed Architecture for Large RAMs", U.S. Patent No. 4,833,677,

May 23, 1989. "DeBruijn Graph Based VLSI Viterbi Decoder", Application No. 904341,

June 18, 1992.

List of Publications

Text Book

Fault-tolerant Computing: Theory and Techniques (Editor and Co-Author), Vol. I and

Vol. II, Prentice-Hall, Inc.. May 1986 (Second Edition to appear 1993).

In Journals

1. "Modeling Live and Deal Lines in Cache Memory Systems" (with D. Thiebault and

A. Mendelson), IEEF ii ,rnsazctzons on Computers, to appear.

2. "A New Algorithm fi>r hank-Order Filtering and Sorting" (with Barun Kar), IEEE

Transactions on ASSP, t,, appear.

3. "Virtual Checkpoints: Architecture and Performance" (with N.S. Bowen), IEEE Trans-

actions on Computers, to appear.

4. "Accelerated Dynamic Learning for Trest Pattern Generation in Combinational Cir-

cuits" (with W. Kunz), IEEE Transactions en Computer-Aided Design, to appear.

24

,, , • . .. d •--'-nm n - ---- •I . l .. • m dlb N • . . .

5. "Survey of Checkpoint and Rollback Recovery Techniques", Computer, to appear.

6. "Yield Optimization in Large RAMs with Hierarchical Redundancy" (with K.N. Gana-

pathy and A.D. Singh), IEEE Journal of Solid State, Vol. 26, No. 9, pp. 1259-1264,

September 1991.

7. "A New Framework for Designing and Analyzing BIST Techniques and Zero Aliasing

Compression" (with S.K. Gupta), IEEE Transactions on Computers, Vol. 40, No. 6,

pp. 743-763, June 1991.

8. "Consensus with Dual Mode Failures" (with F.J. Meyer), IEEE Transactions on Par-

allel and Distributed Systems, Vol. 2, No. 2, pp. 214-222, April 1991.

9. "Error Correcting Codes in Fault-Tolerant Computers" (with E. Fujiwara), Computer,

Vol. 23, No. 7, pp. 63-72, July 1990.

10.. "Aliasing Probability for a Multiple Input Signature Analyzer and a New Compression

Technique" (with S. Gupta and M. Karpovsky), IEEE Transactions on Computers,

Vol. 39, pp. 586-591, April 1990.

11. "Organization and Analysis of Gracefully-Degrading Inter-leaved Memory Systems"

(with K. Saluja, G. Sohi and K. Cheung), IEEE Transactions on Computers, Vol. 39,

No. 1, pp. 63-71, January 1990.

12. "Modeling Defect Spatial Distribution" (with F.J. Meyer), IEEE Transactions on

Computers, Vol. 38, No. 4, pp. 538-546, April 1989.

13. "The DeBruijn Multiprocessor Networks: A Versatile Parallel Processing Network

for VLSI" (with M. Samatham), IEEE Transactions on Computers, Vol. 38, No. 4,

pp. 567-581, April 1989.

14. "Dynamic Testing Strategy for Distributed System" (with F.J. Meyer), IEEE Trans-

actions on Computers, Vol. 38, No. 3, pp. 356-365, March 1989.

15. "TRAM: A Design Methodology for High Performance Testable Large RAMs" (with

N. Jarwala), IEEE Transactions on Computers, Vol. C-37, No. 10, pp. 1235-1250,

October 1988.

25

16. "Designing Interconnection Buses in VLSI and WSI for Maximum Yield and Minimum

Delay" (with I. Koren and Z. Koren), IEEE Journal of Solid State Circuits, Vol. 2,

pp. 859-866, June 1988.

17. "Flip Trees: A Fault-Tolerant Network with Wide Containers" (with F.J. Meyer),

IEEE Transactions on Computers, Vol. 37, No. 4, pp. 472-478, April 1988.

18. "Modeling the Effect of Redundancy on Yield and Performance of VLSI Systems"

(with I. Koren), IEEE Transaction on Computers, Vol. C-36, No. 3, pp. 344-355,

April 1987.

19. "Yield and Performance Enhancement through Redundancy in VLSI and WSI Mul-

tiprocessor Systems" (with I. Koren), IEEE Proceedings, Vol. 74, No. 5, pp. 699-711,

May 1986.

20. "Dynamically Restructurable Fault-tolerant Processor Network Architectures", IEEE

Transactions on Computers, Vol. C-34, No. 5, pp. 434-447, May 1985.

21. "Fault-tolerant Multiprocessor Structures", IEEE Transactions on Computers, Vol. C-

34, No. 1, pp. 33-45, January 1985.

22. "Synthesis of Directed Multi-Commodity Flow Problems" (with A. Itai), Networks,

Vol. 14, pp. 213-224, 1984.

23. "Sequential Network Design Using Extra Inputs for Fault Detection", IEEE Transac-

tions on Computers, Vol. C-32, No. 3, pp. 319-323, March 1983.

24. "A Fault-Tolerant Distributed Processor Communication Architecture" (with S. Reddy),

IEEE Transactions on (Computers, Vol. C-31, No. 9, pp. 863-870, September 1982.

25. "A Class of Unidirectional Error Correcting Codes", IEEE Transactions on Computers,

Special Issue on Fault-Tolerant Computing, Vol. C-32, No. 6, pp. 564-568, June 1982.

26. "A Uniform Representation of Permutation Networks Used in Memory-Processor In-

terconnection" (with K.L. Kodandapani), IEEE Transactions on Computers, Special

Issue on Parallel Processing, Vol. C-29, No. 9, pp. 777-791, September 1980.

26

27. "A New Class of Error Correcting-Detecting Codes for Fault-Tolerant Computer Ap-

plications", IEEE Transactions on Computers, Special Issue on Fault-Tolerant Com-

puting, Vol. C-29, No. 6, pp. 471-481, June 1980.

28. "Error-Correcting Codes and Self-Checking Circuits" (with J.J. Stiffier), IEEE Com-

puter, Special Issue on Fault-Tolerant Computing, Vol. 13, No. 3, pp. 27-38, March

1980.

29. "Undetectability of Bridging Faults and Validity of Stuck-at Fault Test Sets" (with

K.L. Kodandapani), IEEE Transactions on Computers, Vol. C-29, No. 1, p. 55-59,

January 1980.

30. "Fault-Tolerant Asynchronous Networks Using Read-Only Memories", IEEE Transac-

tions on Computers, Vol. C-27, No. 7, pp. 674-679, July 1978.

31. "Fault Secure Asynchronous Networks", IEEE Transactions on Computers, Vol. C-27,

No. 5, pp. 396-404, May 1978.

32. "A Theory of Galois Switching Functions", IEEE Transactions on Computers, Vol. C-

27, No. 3, pp. 239-249, March 1978.

33. "Universal Test Sets for Multiple Fault Detection in AND-EXOR Arrays", IEEE

Transaction on Computers, Vol. C-27, No. 2, pp. 181-187, February 1978.

34. "Store Address Generator with Built-In Fault Detection Capabilities" (with M.Y.

Hsiao & A.M. Patel), IEEE Transactions on Computers, Vol. C-26, No. 11, pp. 1144-

1147, November 1977.

35. "A Graph-Structural Appr .ach for the Generalization of Data Management Systems",

Information Sciences. A.\m' rican Elesevier Publishing Company, Inc., pp. 1-17, March

1977.

36. "Techniques to Construct (2,1) Separating Systems from Linear Codes" (with SM.

Reddy), IEEE Transactions on Computers, Vol. C-25, No. 9, pp. 945-949, September

1976.

37. "Reed-Muller Canonic Forms for Multivalued Functions" (with A.M. Patel), IEEE

Transactions on Computers, Vol. C-24, No. 2, pp. 206-220, February 1975.

27

I no mannnn~ui,,,nmn, mI

38. "Fault-Tolerant Carry Save Adders", IEEE Transactions on Computers, Vol. C-23,

No. 11, pp. 1320-1322, November 1974.

39. "Design of Two-Level Fault-Tolerant Networks" (with S.M. Reddy), IEEE Transac-

tions on Computers, Vol. C-23, No. 1, pp. 41-48, June 1974.

40. "Fault-Tolerant Asynchronous Networks" (with S.M. Reddy), IEEE Transactions on

Computers, Vol. C-22, No. 7, pp. 662-669, July 1973.

41. "Error Correcting Techniques for Logic Processors" (with S.M Reddy), IEEF T,'ane-

actions on Computers, Vol. C-21, No. 12, pp. 1331-1335, December 1972.

In Conference Proceedings

1. "A Design for Testability Scheme to Reduce Test Application Time in Full Scan"

(with Jayashree Saxena), 10th IEEE VLSI Symposium, Atlantic City, New Jersey,

April 1992.

2. "Signature Analysis under a Delay Fault Model" (with Jayashree Saxena), European

Conference on Design Automation, pp. 285-290, Brussels, Belgium, March 1992.

3. "A Hierarchical Directory Scheme for Large-Scale Cache Coherent Multiprocessors"

(with Y.-C. Maa and D. Thiebaut), 6th International Parallel Processing Symposium,

pp. 43-46, Beverly Hills, California, March 1992.

4. "Signature Analysis under a Delay Fault Model" (with Jaya-hree Saxena), European

Conference on Design Automation, pp. 285-290, Brussels, Belgium, March 1992.

5. "Yield Optimization of Redundant Multimegabit RAM's using the Center-Satellite

Model" (with D. Dassharma), IEEE International Conference on Wafer Scale Integra-

tion, San Francisco, California, January 1992.

6. "A Virtual Memory Translation Mechanism to Support Checkpoint and Rollback Re-

covery" (with N.S. Bowen), Supercomputing '91, pp. 890-899, November 1991.

28

7. "Two Economical Directory Schemes for Large-Scale Cache Coherent Multiprocessors"

(with Y.-C. Maa and D. Thiebaut), ACM SIGARCH Computer Architecture News,

pp. 10-18, September 1991.

8. "Technique for Virtual Memory Architecture to Support Checkpoint and Rollback

Recovery" (with N.S. Bowen), IBM Technical Disclosure Bulletin, Vol. 34, pp. 451-

457, September 1991.

9. "High Level Synthesis of Data Driven ASICs" (with B. Patel), Proc. Fourth An-

nual IEEE International ASIC Conference & Exhibit - ASIC'91", Rochester, NY,

September 1991.

10. "Program Fault-tolerance Based on Memory Access Behavior" (with N. S. Bowen),

Proc. 1991 International Symposium on Fault-Tolerant Computers, pp. 426-433, Mon-

treal, Canada, June 1991.

11. "System Level Diagnosis: Combining Detection and Location"(with N. H. Vaidya),

Proc. 1991 International Symposium on Fault-Tolerant Computing, pp. 488-495, Mon-

treal, Canada, June 1991.

12. "A Methodology for Partial Scan Design" (with S. Non and J. Swaminathan), Proc.

Second European Test Conference, pp. 263-271, Munich, Germany, April 1991.

13. "Weight/Space Bounded Error Control", Proc. 1990 International Conference on In-

formation Theory and Its Applications, pp. 31-34, Honolulu, Hawaii, November 1990.

14. "Application Specific VLSf Architectures Based on De Bruijn Graphs", Application

Specific Array Processors. IEEE Computer Society Publications, pp. 628-640, Novem-

ber 1990.

15. "Modeling of Live Lines and Tree Sharing in Multi-Code Memory Systems", Interna-

tional Conference on Parallel Processing, Vol. I, pp. 326-330, August 1990.

16. "Zero Abasing Compression", Proc. 1990 International Symposium on Fault-Tolerant

Computing, Newcastle, U.K., pp. 254-263, July 1990.

29

i-

17. "On Implementing Improved Access Control Protocol for Shared Data Systems" (with

A. Mendelson and A.D. Singh), Proc. of 1st Annual IEEE Symposium on Parallel and

Distributed Computing, Dallas, TX, pp. 389-396, May 1989.

18. "Yield Modeling and Optimization of Large Redundant RAMs" (with A.D. Singh and

K. Ganapathy), International Conference on Wafer Scale Integration, San Francisco,

CA, pp. 273-287, January 1989.

19. "RTRAM: Reconfigurable and Testable Multi-bit RAM Design", International Test

Conference, Washington, DC, pp. 263-278, September 1988.

20. "A New Framework for Designing and Analyzing BIST Techniques: Computation of

Exact Aliasing Probability", International Test Conference, Washington, DC, pp. 329-

340, September 1988.

21. "An Easily Testable Architecture for Multimegabit RAMs" (with N. Jarwala), Proc.

of International Test Conference, pp. 750-758, Washington, September 1987.

22. "Consensus with Dual Failure Modes" (with F.J. Meyer), Proc. FTCS-17, Pittsburgh,

pp. 48-54, July 1987.

23. "Cost Analysis of OnChip Error Control Coding for Fault-Tolerant Dynamic RAMs"

(with N. Jarwala), Proc. FTCS-17, Pittsburgh, pp. 278-283, July 1987.

24. "Organization and Analysis of Gracefully-Degrading Interleaved Memory Systems"

(with K. Cheung, G. Sohi, K. Saluja), Proc. 14th International Symposium on Com-

puter Architecture, pp. 224-231, Pittsburgh, June 1987.

25. "Wafer-Scale Integration of Multiprocessor Systems" (with I. Koren and Z. Koren),

Proc. of HICSS-20 Hawaii International Conference on System Sciences, pp. 13-20,

January 1987.

26. "Introducing Redundancy into VLSI Designs for Yield and Performance Enhancement"

(with Israel Koren), Proc. FTCS-15, pp. 330-334, Ann Arbor, Michigan, June 1985.

27. "Dynamic Testing Strategy for Distributed Systems" (with F.J. Meyer), Proc. FTCS-

15, pp. 84-90, Ann Arbor, Michigan, June 1985.

30

| il I I A I [I • I I I I ll I |i-

1p

I

28. "A Versatile Sorting Network" (with M.R. Samatham), Proc. 12th Annual Symposium

on Computer Architecture, pp. 360-367, June 1985.

29. "Fault-tolerant Multibus Architectures for Multiprocessors" (with M.L. Schlumberger

and Z. Hanquan), Proc. FTCS-14, Kissimee, Florida, pp. 400-408, June 1984.

30. "A Multiprocessor Network Suitable for Single Chip VLSI Implementation", Proc.

1984 IEEE 11th Annual International Symposium on Computer Architecture, pp. 328-

337, June 1984.

31. "Fault-Tolerant Network Architectures for Multiprocessors and VLSI Based Systems",

Proc. FTCS-13, Milan, Italy, pp. 436-441, June 1983.

32. "On a Class of Multiprocessor Network Architectures", Proc. of International Con-

ference on Distributed Processing, Miami, Florida, pp. 302-311, October 1982 (also

reprinted in Interconnf.ction Networks for Parallel and Distributed Processing, edited

by C. Wu and T. Feng, August 1984).

33. "Testing for Delay Faults in a PLA" (with K. Son), Proc. International Conference

on Circuits and Computers, pp. 346-349, September 1982.

34. "Interconnections Topologies for Fault-Tolerant Parallel and Distributed Architec-

tures", Proc. of 10th International Conference on Parallel Processing, pp. 238-242,

August 1981.

35. "Fault-Diagnosis of Parallel Processor Interconnection Networks" (with KM. Falavara-

jani), Proc. Eleventh Annual International Symposium on Fault- Tolerant Computing,

pp. 209-212, June 1981.

36. "A Fault-Tolerant Communication Architecture for Distributed Systems", Proc. Eleventh

International Conference on Parallel Processing, pp. 214-220, June 1981.

37. "A Solution to Load-Balancing and Fault Recovery in Distributed Systems" (with

K. Matsui), Symposium on Reliability in Distributed Software and Database Systems,

pp. 89-94, July 1981.

31

II m III~- IItl m ''al ''• =

38. "Completely Self-Checking Checkers" (with K. Son), Digest of 1981 Test Conference,

pp. 231-237, October 1981.

39. "A Fault-Diagnosis Technique for Closed Flow Networks", Proc. of 1980 Symposium

on Fault-Tolerant Computing, pp. 302-304, Kyoto, Japan, October 1980.

40. "Effect of Undetectable Faults on Testing PLAs" (with K. Son), Digest of 1980 Test

Conference, pp. 359-367, November 1980.

41. "An Easily Testable Design of PLAs" (with K. Son), Cherryj Hill Test Conference,

Philadelphia, Pennsylvania, November 1980 (reprinted in IEEE Tutorial on VLSI Test-

ing, edited by Rex Rice, 1981).

42. "A Generalization of Shuffle- Exchan ee Ne ,i" irks", Proc. of Fourteenth Annual Con-

fete ,ce on Information Sciences anm ,stems, Princeton, New Jersey, March 1980.

43: "A Framework for the Study of Permutations and Applications to Memory Proces-

sor Interconnection Networks" (with K.L. Kodandapani), Proc. 1979 International

Conference on Parallel Processing, pp. 148-158, August 1979. D I

44. "Shift Registers Designed for On-Line Fault Detection", Proc. of 1978 International

Symposium on Fault Tolerant Computing, Toulouse, France, pp. 173-178, June 1978.

45. "A Synthesis Algorithm of Directed Two-Commodity Networks", 1978 IEEE Interna-

tional Symposium on Circuits and Systems, New York, pp. 93-98, May 1978.

46. "Error Control Techniques for Array Processors", 1977 International Symposium on

Information and Theory,. Ithaca, New York, October 1977.

47. "On Undetectability 4• k~rvfting Faults" (with K.L. Kodandapani), Proceedings of

1977 International Symposium on Fault-Tolerant Computing, p. 192, Los Angeles,

California, June 1977.

48. "Fault -Tolerant Fail-Safe ILgic Networks" (with S.M. Reddy), Proceedings on IEEE

Compcon, pp. 363-366, March 1977.

49. "Further Results on mn-R.MC Forms" (with K.L. Kodandapani), Proceedings of 1976

International Symposium on Multivalued Logic, Logan, Utah, pp. 88-93, May 1976.

32

II m • d~m mm= m~~mmI C,

D

50. "A Graph Structural Approach to Data Management Systems" (with L.C. Chang), p

Proc. Ninth Hawaii International Conference on System Sciences, Western Periodi-

cals, pp. 254-258, January 1976.

51. "Fault-Tolerant Asynchronous Networks Using (2,1)-Type Assignments", Digest of

Fifth International Symposium on Fault-Tolerant Computing, Paris, France, June 1975.

52. "Construction on Error Correcting Codes with Run-Length Limited Properties", pre-

sented in 1974 International Symposium on Information and Theory, Notre Dame,

Indiana, November 1974.

53. "Synthesis of Arithmetic and Logic Processors by using Nonbinary Codes" (with L.C.

Chang), Digest of Papers, Fourth International Symposium on Fault-Tolerant Com-

puting, IEEE Computer Society Publications, pp. 4-22, June 1974.

54. "A Multi-Valued Switching Algebra Based on Finite Field", Proc. 1974 International

Symposium on Multiple Valued Logic, IEEE Computer Society Publications, Vol. 3,

pp. 95-113, May 1974. 4

55. "On Fault Diagnosis of Sequential Machines", Proc. VI Hawaii Conference on System

Sciences, Western Periodicals, January 1973.

56. "A Design Technique for Synthesis of Fault-Tolerant Adders" (with S.M. Reddy),

Digest of Papers of 1972 International Symposium on Fault- Tolerant Computing, IEEE

Computer Society Publications, pp. 20-25, June 1972.

33

I

9 Biography
4

Dhiraj K. Pradhan

Computer Science Department

H. R. Bright Building

Texas A&M University

College Station, TX 77843

(409) 862-2438 (office)

(409) 847-8578 (fax)

pradhan@cs.tamu.edu

Dhiraj K. Pradhan is currently holder of the Endowed Chair Professorship in Computer

Science at Texas A&M University, College Station, Texas. Prior to joining Texas A&M

he served until 1992 as Professor and Coordinator of Computer Engineering at University

of Massachusetts, Amherst. Funded by NSF, DoD and various corporations, he has been

actively involved in VLSI testing, fault-tolerant computing and parallel processing research, * *
presenting numerous papers, with extensive publication in journals over the last twenty

years. Dr. Pradhan has served as guest editor of special issues on fault-tolerant computing

of IEEE Transactions on Computers and Computer, published in April 1986 and March 1980

respectively. Currently, he is an editor for several journals, including IEEE Transactions on

Computers and JETTA. He has also served as the General Chair of the 22nd Fault-Tolerant

Computing Symposium and as Program Chair for the 10th IEEE VLSI Test Symposium.

Also, Dr. Pradhan is a co-author and editor of Fault-Tolerant Computing: Theory and

Techniques, Volumes I and II (Prentice Hall, 1986; 2nd ed., 1992).

Dr. Pradhan is a Fellow of t hli IF F. f and is a recipient of the Humboldt Distinguished Senior

Scientist Award.

34

A II I A I II i I I II • .i •A , .. . • ,

